فارسی انگلیسی
سبد خرید: (0) مورد
خوش آمدید, کاربر گرامی
محصولات
کارخانه
سبد خريد
 
0 مورد
مقایسه محصولات
محصولی برای مقایسه انتخاب نشده است!
ورود به سيستم
آدرس پست الكترونيك:
كلمه عبور:

کلمه عبورتان را فراموش کرده اید؟
هنوز ثبت نام نکرده اید؟
تگ محصولات
برخی از مشتریان ما
جدول بتنی پرسی
کفپوش بتنی(خشکه چین)
محصولات واش بتن

ارزیابی دوام بتن (آزمایشها و معیارها)


 

 

در این مقاله ابتدا به اهمیت دوام و سیر تدریجی بها دادن به مسئله دوام پرداخته شده است و ضمن اشاره به بررسی دوام از دیدگاه های مختلف، نیاز به انجام آزمایش های دوام مطرح گردیده است. همچنین سعی شده است این آزمایش ها از جهت بررسی مستقیم یا غیرمستقیم دوام بتن طبقه بندی گردد و مشکلات آزمایش های دوام و ارتباط آن با واقعیت طرح شود. در بخش دیگر به برخی آزمایش های رایج و معروف موجود پرداخته شده است.

مقدمه

دوام یا پایایی بتون متناظر با سن یا عمر خدمت رسانی آن در شرایط محیطی مشخص به شمار می آید. بدیهی است با تغییر شرایط محیطی حاکم بر بتن، مفهوم دوام بتن تغییر می کند.

طبق تعریف ACI 201، دوام بتن حاوی سیمان پرتلند به توانایی آن برای مقابله با عوامل هوازدگی، تهاجم شیمیایی، سایش بتن و یا هر فرآیندی که به آسیب دیدگی می انجامد، گفته میشود. بنابراین، بتن پایا بتنی است که تا حدود زیادی شکل اولیه و کیفیت و قابلیت خدمت رسانی خود را در شرایط محیطی حاکم حفظ نماید [1].

اکنون لزوم منظور نمودن مشخصات دوامی مصالح مصرفی در سازه ها همانند مشخصات مکانیکی پذیرفته شده است که همراه آن هزینه نیز منظور می گردد.

افزایش فزاینده هزینه های تعمیر و بازسازی سازه های آسیب دیده ناشی از تخریب مصالح مصرفی، بخش قابل توجهی از هزینه ساخت سازه ها را به خود اختصاص می دهد [2].

برآورد می گردد در کشورهای پیشرفته صنعتی بیش از 40 درصد کل منابع پولی صنعت ساختمان در بخش تعمیر و نگهداری سازه های موجود، و کمتر از 60 درصد آن برای ایجاد سازه های جدید خرج می گردد [2].

این موارد ما را بر آن می دارد که موضوع دوام مصالح مصرفی بویژه بتن را جدی بگیریم. علاوه بر هزینه، موضوع حفظ محیط زیست و آلودگی هوا و خاک و آب کره زمین و حفظ منابع خدادادی طبیعی این کره خاکی، ما را مجبور به با دوام تر ساختن بتن می نماید.

سازه هایی همچون رویه های بتنی راه، فرودگاه و پارکینگ ها، بتن های سیلوهای غلات و سیمان و سایر مصالح معدنی، پلهای راه و راه آهن، باراندازها و اسکله های بتنی و پلهای ارتباطی آن، مخازن آب یا نفت و گاز مایع و غیره، جداول بتنی و قطعات نیوجرسی، قطعات پیش ساخته ای همانند تراورس و لوله های بتنی آب و فاضلاب، سازه های بتنی فراساحلی، سدهای بتنی و سرریزها، پوشش بتنی پیش ساخته و درجا برای تونل های راه و راه آهن و انتقال آب، سازه های بتنی تصفیه خانه های آب و فاضلاب، سازه های بتنی راکتورهای اتمی و تاسیسات وابسته به آن، کانالهای انتقال آب و آبروهای بتنی، دودکش ها و برج های مخابراتی بتنی، ساختمانها و بناهای مسکونی، تجاری، اداری و آموزشی، فرهنگی و ورزشی، نیروگاه های آبی، گازی و حرارتی، برجهای خنک کن باز و بسته نیروگاه های حرارتی، سازه های مرتبط با صنایع مختلف مانند سیمان، نفت و گاز، فولاد، شیشه و صنایع مختلف کشاورزی و غذایی، ساخت قطعات پیش ساخته غیرمسلح یا مسلح برای حفاظت از موج شکن ها و تاسیسات بندری و غیره از جمله مواردی است که مصرف بتن با دوام و قطعات بتنی با عمر زیاد را می طلبد.

هرچند از دیرباز مسئله دوام مصالح ساختمانی اهمیت داشته است اما بعد از جنگ جهانی دوم و بویژه از دهه 70میلادی به موضوع دوام بتن بیش از پیش پرداخته شده است و مرتبا بر اهمیت آن افزوده می شود.

گستره دوام بتن به مراتب وسیع تر از موضوع مقاومت آن می باشد. تعیین مقاومت بتن به ویژه مقاومت فشاری آن امری است که طی سالیان گذشته به مدت بیش از 100سال به انجام رسیده است و به نظر می رسد حاوی نکات پیچیده ای نباشد، هرچند دارای جزئیات خاصی است و به هرحال در سن خاصی در کوتاه ترین زمان ممکن اندازه گیری می شود. اما در مورد دوام پیچیدگی بیشتری بدلیل ساز و کارهای متفاوت و آزمایش های گوناگون وجود دارد [3].

طبقه بندی ساز و کار دوام و آزمایش های آن

دوام بتن دوام بتن ابعاد مختلفی دارد [2]:

- پایایی در برابر عوامل فیزیکی (آتش، یخبندان و آب شدگی پی در پی، تبلور نمک ها)

- پایایی در برابر تهاجم شیمیایی (سولفات ها، کربناسیون، تاثیر واکنش قلیایی ها با سنگدانه ها بر بتن)

- پایایی در برابر عوامل مکانیکی (سایش، خلازایی)

- تخریب در اثر خوردگی میلگرد

پی بردن به دوام بتن در شرایط مختلف نیاز به قرار گرفتن در این شرایط و طی شدن زمان قابل توجه دارد و معمولا امکان انجام تحقیق در شرایط واقعی وجود ندارد و یا از حوصله دست اندرکاران خارج است. برای اینکه مشخص شود یک بتن در چنین شرایطی بطور مناسب و مطلوب عمل می کند نیاز به آزمایش هایی کوتاه مدت دارد که در این آزمایش ها عوامل تهاجمی یا اعمالی تشدید می شود (تسریع شده) و یا آزمایش بصورت تسریع نشده و در شرایط معمولی انجام می گردد که در این حالت دوم معیار مقایسه تغییر می کند.

گاه برخی آزمایش های کوتاه مدت مرتبط با دوام و در معرض عاملی غیر از عامل موردنظر مورد استفاده قرار می گیرد و با توجه به تجربیات موجود در پروژه های واقعی و در کارهای تحقیقاتی آزمایشگاهی معیارهایی ارائه می شود.

نمونه ای از آزمایش های کوتاه مدت تسریع شده در برابر عامل تشدید شده موردنظر، سایش یا آزمایش ASTM C1293 می-باشد.

نمونه ای از آزمایش تسریع نشده کوتاه مدت در شرایط تشدید نشده را می توان آزمایش یخبندان و آب شدگی دانست.

از میان آزمایش های کوتاه مدت مرتبط با دوام که در معرض عامل اصلی موردنظر قرار نگرفته است می توان آزمایش جذب آب یا جذب آب مویینه را نام برد. شاید بتوان آزمایش های جمع شدگی را نیز مرتبط با دوام دانست. آزمایش های تراوایی (نفوذپذیری) نیز مرتبط با دوام به حساب می آید.

ارزیابی کیفیت بتن از نظر دوام و معیارهای آن

ارزیابی دوام از طریق انجام آزمایش هایی بر روی بتن سخت شده در سنین کم و گاه در سن موجود صورت می گیرد. برای این کار نیاز به معیارها و ملاک هایی می باشد. در زیر به برخی از آزمایش های ارزیابی بتن و معیارهای آن اشاره می شود.

آزمایش های یخ زدن و آب شدن

این آزمایش ها به دو صورت در استانداردها وجود دارد:

- یخبندان و آب شدگی پی در پی در حالت اشباع در آب یا هوا و کنترل کاهش وزن، کاهش مقاومت، افزایش حجم و کاهش مدول ارتجاعی دینامیکی مانند ASTM C666 [4]

- یخبندان و آب شدگی پی در پی در مجاورت آب نمک یا نمک های یخ زدا و کنترل پوسته شدن سطح بتن و کاهش وزن آن مانند ASTM C1262 [5]، ASTM C672 [6] و EN 1340 [7]

به هرحال این آزمایش ها عمدتا در سنین کم 28 تا 90 روزه بر روی بتن ها در آزمایشگاه انجام می شود و مدت زمان زیادی بطول می انجامد.

امروزه در آزمایش های یخبندان در حالت اشباع مانند ASTM C666 از پارامتر کاهش مدول ارتجاعی دینامیکی استفاده می شود. پس از تعداد معینی سیکل یخبندان، درصد مدول ارتجاعی دینامیکی اولیه بدست می آید. حداقل درصد قابل قبول مدول ارتجاعی دینامیکی اولیه، یک ملاک یا ضابطه تلقی می شود. مثلا بتنی با دوام تلقی می گردد که پس از 300 سیکل یخبندان و آب شدگی مکرر، حداقل 60 و یا 80 درصد مدول ارتجاعی دینامیکی را دارا باشد [4].

در مواردی تعداد سیکل های یخبندانی را که مدول ارتجاعی دینامیکی را به 60 درصد مقدار اولیه می رساند مشخص می گردد. بدیهی است در این حالت باید حداقل تعداد سیکل های یخبندان مورد نظر به عنوان یک معیار اعلام گردد [4].

در آزمایش های یخبندان و آب شدگی پی در پی در معرض مواد یخ زدا معمولا درصد وزن بتن پوسته شده پس از تعداد معینی سیکل یخبندان بدست می آید. با محدود کردن میزان مواد پوسته شده، معیاری ارائه می گردد. به عنوان مثال در ASTM C1372 [8] پس از 100سیکل خاص یخبندان در آزمایش ASTM C1262 [5] نباید از 1درصد وزن اولیه بیشتر شود.

هرچند در این آزمایش نیز می توان تعداد سیکل یخبندان برای دستیابی به درصد خاصی از پوسته شدن را به عنوان یک معیار برگزید، اما این امر سابقه چندانی ندارد.

برای مثال در EN1340 برای جداول بتنی پیش ساخته مقدار مواد پوسته شده نباید از kg/m3 1 پس از 28 سیکل خاص یخبندان در حالی که محلول نمک طعام 3 درصد بر روی آن ریخته شده است، بیشتر باشد [7].

در ASTM C672 معمولا پس از 50 سیکل یخبندان خاص در معرض مواد یخ زدا (محلول کلرید کلسیم 4 درصد) که روی قطعه ریخته می¬شود و درجه تخریب سطح پس از 5، 10، 15، 25 و 50 سیکل گزارش می شود که معیار درجه تخریب ارائه می شود [6].

به هر حال باید دانست که در همه انواع آزمایش یخبندان و آب شدگی مکرر در برابر آب یا نمک های یخ زدا، شرایط آزمایش با واقعیت موجود تطابق ندارد اما به ناچار از این آزمایش ها و معیارهای ارزیابی آن استفاده می شود.

در ASTM C1262 که برای قطعات پیش ساخته بتنی و برخی قطعات بنایی بکار می رود و آب یا آب نمک 3درصد (بسته به نیاز) در مجاورت قسمت تحتانی قطعه ریخته می شود و معمولا سیکل های خاص یخبندان اعمال می گردد و درصد کاهش وزن بدست می آید. با توجه به معیار خاص کاهش وزن در برابر تعداد خاصی سیکل یخبندان کیفیت دوامی قطعه کنترل می شود [5].

آزمایش تبلور نمک ها

برای بررسی تاثیر تبلور نمک ها بر دوام بتن، آزمایش خاصی پیش بینی نشده است، هرچند عامل مهمی در مناطق نیمه خشک و خشک در تخریب سطح بتن ها محسوب می شود بویژه اگر املاح قابل توجهی در بتن و یا آب و خاک وجود داشته باشد [2].

آزمایش دوام در برابر سولفات ها

برای بررسی دوام بتن در برابر سولفات ها آزمایش استاندارد خاصی در ASTM و EN مشاهده نمی شود. همچنین روشن است که معیار خاصی نیز وجود ندارد. پس از سالهای طولانی که از تشخیص خرابی بتن در اثر حمله سولفات ها گذشته است هنوز آزمایش خاص و معیار دوام بتن در برابر حمله سولفات ها و یا در برابر سولفات خاصی ارائه نشده است [8].

سعی می شود با استفاده از سیمان مناسب، محدودیت نسبت آب به سیمان و یا عیار سیمان و یا استفاده از افزودنی های بتن مانند پوزولان ها و سرباره ها و یا حباب¬زا و مواد آب¬بند کننده، دوام بتن را بالا برده اما نحوه تشخیص این افزایش دوام روشن نیست [1].

سعی شده است آزمایش هایی بر روی سیمان یا ملات در محلول سولفات دار انجام گردد و انبساط آنها اندازه گیری شود و با تعیین معیارهایی، کیفیت سیمان از نظر مقابله با حمله سولفات ها مشخص گردد [9 و 10].

آزمایش هایی برای نفوذ و انتشار سولفات در بتن پیش بینی شده است اما هنوز استاندارد نشده است. با این حال نفوذ سولفات در بتن دقیقا نمی تواند دوام بتن در برابر سولفات ها را به نمایش گذارد [11 و 12].

آزمایش کربناسیون

آزمایش ساده و معمول تعیین عمق کربناسیون تا چندی پیش صرفا بر اساس دستورالعمل RILEM CPC18 انجام می گردید [13] که EN نیز به تازگی دستورالعمل استانداردی را مشابه RILEM ارائه کرده است [14]. در این آزمایش عمق بتن کربناته شده با محلول فنل فتالئین به عنوان یک معرف اندازه گیری می شود. معمولا این آزمایش بر روی بتن سخت شده در شرایط محیطی واقعی اندازه گیری می شود که می توان تحت شرایطی نفوذ CO2 را تسریع نمود [13].

به هرحال هنوز معیار خاصی برای قدرت مقابله با کربناسیون و عمق نفوذ آن ارائه نشده است، هرچند می توان میزان نفوذپذیری گاز CO2 در بتن را اندازه گیری نمود.

می توان با اندازه گیری pH پودر بتن پروفیل pH در برابر عمق را رسم کرد و عمق کربناسیون را مشخص نمود [15].

آزمایش انبساط ناشی از واکنش قلیایی ها با سنگدانه های بتن

معمولا بیشتر آزمایش ها در این زمینه بر روی ملات می باشد و یا شرایط خاصی همچون تشدید شرایط حاکم و یا افزایش قلیایی ها در ملات و یا محیط نگهداری را دارا می باشد. طبق استاندارد ASTM C1293 و تعدادی از استانداردهای کانادایی، انبساط بتن در شرایطی نزدیک به واقع اما در دمای 38 یا 60 درجه با رطوبت 100درصد را در زمانی طولانی تر از 6ماه و یا یک سال و بیشتر بدست می آورند [16].

معیارهایی همچون انبساط 04/0 درصد پس از سه ماه در 60 درجه سانتیگراد و یا پس از یک سال در 38 درجه سانتیگراد ارائه شده است. به هرحال در این آزمایش انبساط بالقوه بتن بدست می آید [17، 18 و 19].

برای سنگدانه کربناتی از ASTM C1105 استفاده می شود و معیارهایی برای آن ارائه شده است [17 و 20].

آزمایش های سایش

در استاندارد ASTM برای بتن چهار آزمایش سایش ارائه شده است و برای برخی قطعات بتنی نیز از این آزمایش ها و یا آزمایش های دیگری استفاده می شود.

- ASTM C944 برای سایش بتن یا ملات (روش سمباده چرخان) [21]

- ASTM C418 برای سایش بتن (روش ماسه پاشی) [22]

- ASTM C779 برای سایش سطوح افقی بتنی (سه روش صفحه مدور سمباده ای چرخان، چرخ استوانه ای دندانه دار، بلبرینگ چرخان) [23]

- ASTM C1138 برای سایش بتن (روش زیر آب) [24]

به نظر می رسد در آزمایش های سایش دقت زیادی شده است تا نزدیکی بیشتری با واقعیت موجود داشته باشد که تنوع آزمایش ها را سبب گشته است.

در موارد مختلف برای هر نوع قطعه یا سطح در هر پروژه یا کاربرد خاص، معیاری ارائه می شود که نشانه دوام بتن در برابر سایش است. در برخی استانداردهای دیگر آزمایش سایش چرخ عریض و آزمایش سایش Bohme پیش بینی شده است. برای مثال در استاندارد جداول بتنی (EN 1340) این دو آزمایش پیش بینی شده است و معیار خاصی در هر مورد ارائه شده است [7].

 

آزمایش های نفوذپذیری

آزمایش های نفوذپذیری بتن در برابر آب و گازهای مختلف و حتی برخی سیال های خاص دیگر انجام می شود.

آزمایش های نفوذپذیری در برابر آب

آزمایش های نفوذپذیری بتن در برابر آب از گذشته دور براساس رابطه دارسی انجام می شده است. ارتش آمریکا و USBR آزمایش هایی را برای تعیین ضریب نفوذپذیری بتن در برابر آب ارائه کرده اند که بسیار مشکل است. در روش ارتش آمریکا (CRD-C48) فشار حدود 14 اتمسفر و در روش USBR 4913 فشار 5/28 اتمسفر بکار می رود [25 و 26]. در این آزمایش¬ها مقدار k با بعد L/T بدست می¬آید. در هر پروژه مقدار حداکثر k مشخص می¬شود و لازم است بتن موردنظر این خواسته را برآورد کند.

بتن هایی که در حال حاضر برای پروژه های آبی ساخته می شود دارای نفوذپذیری پایینی است و عملا انجام این آزمایش و تعیین k بصورت مستقیم غیرممکن گشته است. بدین دلیل سعی شده است با اندازه گیری عمق نفوذ آب در این آزمایش و با استفاده از یک سری روابط تجربی بر اساس فرضیات مختلف، از عمق نفوذ مقدار k را بدست آورد که نتایج آن قابل اعتماد نمی باشد.

 

همچنین روش های درجا و آزمایشگاهی معروف دیگری نیز وجود دارند که به جای ارائه ضریب نفوذپذیری، شاخص های نفوذپذیری را بدست می دهند. از جمله این آزمایش ها می توان به آزمایش فیگ (Figg) و یا آزمایش Autoclam اشاره کرد. این آزمایش ها در ایران رایج نیست و ممکن است به ندرت در کارهای تحقیقاتی استفاده شده باشد. به هرحال محققین بر اساس این آزمایش ها معیارها و طبقه بندی هایی را برای کیفیت بتن ارائه کرده اند.

آزمایش های نفوذپذیری در برابر گاز

آزمایش های نفوذپذیری با گاز به ویژه اکسیژن روش های مختلفی دارد که معروف ترین آن مربوط به روش CemBureau (انجمن سیمان اروپا) می باشد که در RILEM و استاندارد ایتالیا (UNI) نیز آورده شده است [28 و 29].

در این روش، نمونه قرصی شکل بتنی در محفظه¬ای با تیوب دورگیر تحت فشار قرار گرفته و در فشارهای مختلف اعمالی، دبی عبوری گاز بدست آمده و با رابطه اصلاح¬شده دارسی برای سیال تراکم پذیر، ضریب نفوذپذیری محاسبه می¬گردد. نتیجه این روش آزمایش به درصد رطوبت نمونه بتنی بسیار وابسته می باشد. به همین دلیل، در روش پیشنهادی این آزمایش، دو رژیم نمونه کاملا خشک و با درصد رطوبت مشخص، پیشنهاد شده است [28 و 29].

معیار میزان نفوذپذیری در برابر اکسیژن در مشخصات فنی داده می شود اما تلاش شده است بتن ها از این نظر تقسیم بندی شوند که در زیر دیده می شود.

 

در منطقه خلیج فارس با توجه به آیین نامه پایایی بتن، برای شرایط D، E و F کیفیت عالی و برای B و C خیلی خوب و برای شرایط A حالت کیفی متوسط پیشنهاد می شود. هرچند ممکن است با بکارگیری چنین بتن هایی در عمل به نتیجه چندان خوبی هم دست نیافت.

آزمایش های نفوذپذیری در برابر یون کلرید (آزمایش های انتشار یون کلرید)

کامل ترین راه برای تعیین ضریب انتشار یون کلرید در بتن طبق روش جدید ASTM C1556 [31] که مشابه روش NTBuild 443 [32] است، می باشد. در این روش بتن سخت شده در محلول نمک طعام با غلظت معین قرار می گیرد و در سن موردنظر پس از خشک کردن آن، با تعیین یون کلرید در اعماق مختلف، با توجه به قانون فیک (Fick) ضریب انتشار یون کلرید بدست می آید که بعد آن L2/T است.

برای بتن هر پروژه می توان ضریب انتشار خاصی را درنظر گرفت. بتن ها از این نظر به ویژه در شرایط رویارویی با یون کلرید تقسیم بندی می شوند که در زیر مشاهده می گردد.

 

یکی از پارامترهای منحصربفردی که می توان به کمک آن و بهره گیری از اطلاعات و فرضیات دیگر در هر سنی غلظت یون کلرید پیش بینی نمود در هر عمقی به چه میزان است، ضریب انتشار یون کلر می باشد و بر این اساس زمان رسیدن غلظت یون کلرید در مجاورت میلگرد به حد آستانه تعیین می گردد که زمان شروع خوردگی را مشخص می کند [34].

معمولا از آنجا که تعیین این پارامتر دشوار است، سعی می شود بجای آن، پارامترهای دیگری مشخص شود و جایگزین آن گردد در حالی که عملا نمی توانند جای آن را بگیرند.

یکی از آزمایش های رایج AASHTO T259 است که سطح بتن در معرض محلول کلرید قرار می گیرد و مقدار یون کلرید در سنین خاص و در عمق های خاص اندازه گیری می شود و عمق نفوذ یون کلرید بدست می آید که به کمک آن می توان کیفیت بتن ها را در مقایسه با یکدیگر ارزیابی نمود و می توان بتن ها را نیز از این نظر طبقه بندی کرد. به هرحال نتیجه این آزمایش از جنس نفوذپذیری نیست اما نفوذپذیری را نشان می دهد [35].

روش دیگر برای تعیین نفوذ سریع یون کلرید (مهاجرت) توسط دستور NTBuild 492 [36] ارائه شده است که AASHTO T277 [37] روش مشابه آن را ارائه کرده است.

استاندارد ASTM C1202 روش را برای تعیین سریع نفوذپذیری کلرید در بتن سخت شده ارائه می دهد که در این روش در دو سمت یک قرص بتنی کاملا اشباع شده در خلا به قطر حدود 100 میلیمتر و ضخامت 50 میلیمتر محلول های کلرید سدیم و سود سوزآور با غلظت معین قرار می گیرد و جریان الکتریکی با اختلاف پتانسیل 60 ولت برقرار می شود و شدت جریان عبوری از بتن اشباع بدست می آید و طی 6ساعت، مقدار جریان عبوری از بتن برحسب کولمب محاسبه می گردد که نشانه مقاومت بتن در برابر این جریان است و به عبارتی به نوعی به مقاومت الکتریکی مربوط می باشد. هرچه این جریان عبوری بیشتر باشد نشانه نفوذپذیری بیشتر بتن به ویژه در برابر یون کلرید است. طبقه بندی بتن ها را می توان طبق ASTM C1202 بصورت زیر دانست [38].

 

در آیین نامه پیشنهادی پایایی بتن در محیط خلیج فارس و دریای عمان (نشریه شماره ض428 مرکز تحقیقات ساختمان و مسکن) معیارهای زیر برای شرایط مختلف طبق روش ASTM C1202 ارائه شده است [34].

 

بهتر است در آینده با تجدید نظر در طبقه بندی موجود برای برخی رده های مورد نظر مانند E یا F شرط سخت گیرانه تری مانند 1200 یا 1000 کولومب منظور شود. در عوض برای شرایط محیطی A حداکثر 4000 کولومب نیز پذیرفته گردد.

به هرحال این آزمایش و نتایج آن محل تردید است. برخی معتقدند که بهتر است اختلاف پتانسیل را کم کرده و مدت را متناسبا زیاد نمود تا دمای بتن و محلول ها حین آزمایش بطور شدید بالا نرود و شرایط واقعی تری برقرار باشد [39]. ظاهرا قرار است تغییری در یکی از محلول ها نیز در دستور کار قرار گیرد. به هرحال این آزمایش طی یک روز منجر به اخذ نتیجه می شود و این امر بسیار مهم است.

آزمایش های عمق نفوذ آب

از آنجا که آزمایش های نفوذپذیری در برابر آب همراه با چالش های فراوانی است، در برخی کشورهای اروپایی مانند آلمان آزمایش دیگری انجام می شد که تحت فشار آب، در زمان معینی، عمق آب نفوذی در بتن بدست می آمد (DIN 1048-5) [40]. سپس در EN 12390-8 با تغییرات مختصر، این آزمایش با سهولت بیشتر ارائه شد که در آن نمونه بتنی سه روز از سطح زیرین تحت فشار MPa 5/0 (5 بار) قرار می گیرد و سپس حداکثر عمق نفوذ آب بدست می آید که پارامتری در جهت ارزیابی نفوذ آب در بتن می باشد [41]. در منابع مختلف طبقه بندی بتن ها در آزمایش DIN 1048 آمده است اما هنوز این طبقه بندی برای آزمایش براساس روش EN ارائه نشده است. پراکندگی نتایج آزمونه های مختلف یک نوع بتن در این آزمایش زیاد است و چندان قابل اعتماد نمی باشد [33].

در آیین نامه پیشنهادی پایایی بتن در حاشیه خلیج فارس، معیارهای زیر برای شرایط مختلف محیطی حاکم ارائه شده است [34].

 

دستیابی به حداکثر عمق نفوذ آب 10 میلیمتر عملا بسیار مشکل است و با ضوابط دیگر انطباق مناسبی ندارد و تجدیدنظر در معیار آن ضروری به نظر می رسد. شاید حداکثر عمق نفوذ آب برای طبقه D را بتوان 20 میلیمتر و برای E و F حداکثر 10 یا 15 میلیمتر منظور نمود.

به هرحال الزاما در شرایط واقعی، فشار تا این حد وجود ندارد اما این آزمایش به نوعی تعیین کننده کیفیت بتن می باشد.

آزمایش های جذب آب

آزمایش های جذب آب به شکل های مختلفی وجود دارد که مهم ترین آنها عبارتند از:

- جذب آب کوتاه مدت نیم ساعته (Early Water Absorption)

- جذب آب نهایی (بلند مدت) 2 روزه یا بیشتر در شرایط عادی یا جوشانده شده (Final Water Absorption)

- جذب آب سطحی اولیه ISAT (Initial Surface Water Absorption Test)

- جذب آب مویینه ( Capillary Water Absorption و Water Sorptivity)

هرکدام از این آزمایش ها یک ویژگی خاص از بتن را به نمایش می گذارد و لازم است از هر آزمایش زمانی استفاده نمود که به واقعیت موجود شباهتی داشته باشد [42].

آزمایش جذب آب کوتاه مدت

در BS 1881 در سال های گذشته آزمونه مکعبی خشک 100میلی لیتری در آب غرق می شد و پس از یک ساعت درصد وزنی آب جذب شده بدست می آید که گزارش می شد. در BS 1881 part122 این آزمایش عمدتا برای قطعات بتنی پیش ساخته پس از مغزه گیری به قطر 75 میلیمتر انجام می شود که باید دارای طول معینی باشد و نمونه کاملا خشک شده در آون، غرقاب می شود و درصد جذب آب نیم ساعته بدست می آید [43]. این آزمایش کیفیت سطحی بتن موردنظر را بدست می دهد.

در انگلیس کیفیت جداول بتنی و برخی قطعات پیش ساخته با این آزمایش کنترل می شود. برای مثال جذب آب نیم ساعته یک جدول نباید از 2درصد بیشتر باشد [44]. در آزمایش های جذب آب کوتاه مدت حساسیتی در مورد شکل و اندازه نمونه وجود دارد و نسبت سطح به حجم اهمیت پیدا می کند. در استاندارد BS 1881 ضرایب تصحیح خاصی پیش بینی شده است تا در صورت تغییر قطر و طول نمونه نسبت به قطر و طول استاندارد، بتوان نتایج تصحیح شده را محاسبه نمود [43].

در توصیه های CIRIA برای مناطق عربی در حاشیه خلیج فارس و دریای سرخ و غیره، حداکثر جذب آب کوتاه مدت طبق BS 1881 را 2 درصد مطرح نموده است [45].

در آیین نامه پیشنهادی پایایی بتن در حاشیه خلیج فارس، معیارهای زیر برای شرایط مختلف محیطی حاکم با روش BS 1881 part122 ارائه شده است [34].

 

به نظر می رسد لازم است با تجدید نظر در مورد شرایط E و F مقدار حداکثر جذب آب نیم ساعته را به 5/1 درصد محدود کرد.

آزمایش جذب آب نهایی

هرچند در آزمایش جذب آب کوتاه مدت قدیمی و جدید BS 1881 می توان با تداوم آزمایش تا رسیدن به وزن ثابت، جذب آب نهایی را بدست آورد و حتی با جوشاندن آن در آب به جذب آب نهایی بیشتری دست یافت، اما در این دستور چنین پیش بینی هایی صورت نگرفته است.

در ASTM C642 مقدار جذب آب نهایی بدست می آید و می توان چگالی و تخلخل را نیز بدست آورد، حتی جوشاندن نمونه در آب نیز پیش بینی شده است. در این استاندارد در مورد شکل و اندازه نمونه حساسیتی وجود ندارد اما حداقل جرم و حجم مشخص شده است زیرا به موضوع جذب آب نهایی پرداخته است. این آزمایش عمدتا برای قطعات پیش ساخته بکار می رود [46].

در استاندارد EN 1340 جذب آب نهایی قطعات پیش ساخته ای مانند جداول بتنی به چشم می خورد که حداقل برای حجم یا جرم نمونه مطرح شده است [7]. در استانداردهایی همچون ASTM C497، مقدار جذب آب لوله های بتنی بدست می آید که دو روش A و B با توجه به نحوه خشک کردن و زمان جوشاندن نمونه در آب دارد [47].

برای مثال در برخی استانداردهای قطعات پیش ساخته در ASTM C76 مانند لوله های بتن مسلح آب و فاضلاب، حداکثر جذب آب نهایی طبق ASTM C497 به میزان 9درصد برای روش A و 5/8درصد برای روش B مطرح شده است [48] و از این نظر می توان معیار و طبقه بندی برای کیفیت دوامی بتن ارائه نمود، بویژه اگر قطعه بتنی بصورت غرقاب باشد و آب همواره در مجاورت آن حضور داشته باشد. در استاندارد لوله های بتنی آب و فاضلاب ایران به شماره 8906 از چنین مشخصاتی استفاده شده است [49].

در استاندارد EN 1340 در مواردی که شرایط یخبندان و آب شدگی حادی در برابر نمک های یخ زدا وجود ندارد. حداکثر جذب آب نهایی 6 درصد برای جداول بتنی پیش ساخته ارائه شده است [7].

به نظر می رسد برای بتن های با دوام، حداکثر جذب آب نهایی بتن بهتر است به 6 درصد و برای حالت جوشانده شده به 5/5 درصد محدود شود. برای مناطق حاشیه خلیج فارس بتن های موردنظر در شرایط محیطی طبقه بندی شده در آیین نامه پایایی بتن پیشنهادی، مقدار جذب آب نهایی زیر توسط اینجانب پیشنهاد می شود.

 

در برخی مشخصات استاندارد قطعاتی مانند بلوک سیمانی و موزاییک و آجرهای سیمانی به جذب آب نهایی پرداخته شده است [50، 51 و 52].

آزمایش جذب آب سطحی اولیه

این آزمایش عمدتا در BS 1881 part208 پیش بینی شده است. در این آزمایش سعی می شود مقدار جذب آب ریخته شده روی سطح افقی نمونه بتنی یا قسمتی از قطعات پیش ساخته در حالی که ارتفاع آب چندانی برای اعمال فشار وجود ندارد و به میزان 200 میلیمتر محدود شده است، بدست آید. در این آزمایش در فواصل زمانی مختلف مقدار آب جذب شده برحسب گرم یا میلی لیتر بر واحد سطح (m2) گزارش می شود [53].

طبقه بندی کیفی بتن ها در این آزمایش را می توان بصورت زیر مطرح کرد. در انگلیس از نتایج این آزمایش استفاده می شود اما در آیین نامه پایایی بتن ایران در حاشیه خلیبج فارس و یا در استانداردهای قطعات پیش ساخته مانند جداول مورد اقبال قرار نگرفته است. به هرحال این آزمایش برای موادی که باعث آب بندی سطحی می شوند می تواند با موفقیت بکار رود و کیفیت سطحی را به نمایش گذارد [42].

 

به نظر می رسد در محیط خلیج فارس بویژه در شرایط D، E و F، میزان جذب باید در حد کم و یا در حدی به مراتب کمتر از آن باشد.

جذب آب مویینه

یک ساز و کار جذب آب، حرکت آب به صورت نم مویینه رو به بالا می باشد که نیاز به انجام آزمایش خاص و هماهنگ با این ساز و کار احساس می شود.

در این آزمایش ها معمولا مقدار آب جذب شده در واحد سطح، ارتفاع نم مویینه و آهنگ جذب آب مویینه تعیین و گزارش می شود که در همه دستورها بصورت یکسان نیست و در هر دستور به برخی از این پارامترها پرداخته می شود.

دستور آزمایش RILEM CPC11.2 از جمله دستورهای آزمایش قدیمی در این زمینه است که سالها مورد استفاده قرار گرفته است [54]. اخیرا دستور استاندارد ASTM C1585 ارائه شده است که با دقت بیشتری شرایط آزمایش و شکل آزمونه را مشخص نموده است [55]. در این آزمایش از یک قرص بتنی به قطر 100 میلیمتر و ارتفاع 50 میلیمتر استفاده می شود که بخش تحتانی آن به میزان 1 تا 3 میلیمتر در آب قرار گرفته است و رطوبت محیط اطراف نمونه نیز کنترل می گردد و درنهایت، آهنگ جذب آب مویینه در بازه های زمانی مختلف بدست می آید.

لازم به ذکر است که در این استاندارد دو مقدار آهنگ جذب آب اولیه و ثانویه بدست می آید که معمولا نرخ جذب آب ثانویه به مراتب کمتر از نرخ جذب آب اولیه است. در حالیکه در روش RILEM فقط یک نرخ جذب آب بدست می آید. نگاه ASTM به نرخ جذب آب از RILEM منطقی تر به نظر می رسد و اشکال موجود در روش RILEM و مشکلات برازش یک خط بر چهار نقطه موجود در این روش را حل نموده است. ضمن اینکه تعداد نقاط رسم شده در صفحه مختصات را به مقدار قابل توجهی افزایش داده است و با برازش دو خط به دو مجموعه از این نقاط، برخورد واقع¬بینانه تری داشته است.

هنوز طبقه بندی خاصی در مورد کیفیت بتن ها با کاربرد این آزمایش مطرح نشده است و آنچه در زیر مشاهده می شود عمدتا مربوط به آزمایش های انجام شده بر اساس دستور RILEM می باشد [56].

 

هرچند ساز و کار برخی خرابی ها در ایران و حتی جنوب کشور مربوط به جذب آب مویینه است، اما در دستورهای استاندارد ایران این آزمایش برای بتن جایگاهی ندارد و طبعا مشخصات استاندارد و محدودیت خاصی نیز مطرح نگردیده است. به هر حال به نظر می رسد برای شرایط E و F، کیفیت عالی و یا بهتر از آن، برای شرایط D کیفیت خیلی خوب یا عالی، برای B و C حالت خوب یا خیلی خوب و برای رده A، کیفیت خوب یا متوسط کاربرد دارد.

آزمایش مقاومت ویژه الکتریکی

سهولت یا سختی عبور جریان الکتریکی از بتن اشباع می تواند نشانه ای از نفوذپذیری آن در برابر آب و به ویژه انتشار و مهاجرت یونی (به ویژه یون کلرید) باشد مخصوصا اگر با آب نمک اشباع گردد.

این آزمایش بین پژوهشگران بسیار معروف و رایج است اما دستور استاندارد خاصی برای آن تدوین نشده است.

این آزمایش با استفاده از دو صفحه مسی یا برنجی که بر سطح آزمونه بتنی اشباع از آب به کمک خمیر سیمان تازه می چسبد و مقاومت الکتریکی به کمک اعمال یک جریان متناوب با فرکانس مشخص بدست می آید. می توان با داشتن سطح بتن و فاصله بین دو صفحه فلزی، مقاومت ویژه الکتریکی را بدست آورد. همچنین می توان با چهار الکترود (روش ونر) و تعبیه آن بر سطح بتن یا در سوراخ خاص و برقراری اتصال و تماس الکتریکی، مقاومت الکتریکی و مقاومت ویژه آن را بدست آورد.این روش برای قطعات بتنی موجود نیز قابل استفاده است، در حالی که روش قبلی فقط برای آزمونه های آزمایشگاهی مکعبی، استوانه ای یا منشوری و مکعب مستطیل کاربرد دارد. در صورتی که نخواهیم مقاومت ویژه الکتریکی را بدست آوریم از دو الکترود استفاده کرد که به عمق معین و فاصله معینی از یکدیگر در بتن فرو می رود و بصورت مقایسه ای می توان مقاومت الکتریکی بتن را در بین دو الکترود بدست آورد.

در راه انجام این آزمایش مشکلات و مباحث خاصی مطرح می شود که عبارتند از:

- میزان رطوبت و اطمینان از اشباع بودن بدلیل تاثیر شدید رطوبت بر مقاومت الکتریکی بتن

- نوع جریان و فرکانس مصرفی بدلیل تاثیر آن بر نتایج حاصله

- نقش شکل و اندازه نمونه بر نتایج حاصله

- نقش روش آزمایش (الکترود چهارگانه یا صفحات)

- نقش افزودنی های شیمیایی در تغییر نتایج

- نقش مقاومت الکتریکی سنگدانه های بتن در تغییر نتایج

- نقش هدایت الکتریکی الکترولیت موجود در منافذ به علت املاح محلول در آن

- نقش دما در مقاومت الکتریکی

به هرحال لازم است با محدود کردن تغییرات احتمالی، دستور استاندارد واحدی را تدوین کرد و بتن ها را از این نظر مقایسه نمود و طبقه بندی کرد. ظاهرا کمیته ای در ASTM مشغول به تدوین چنین دستورالعملی می باشد [15، 57، 58 و 59].

طبقه بندی زیر که معیاری جهت ارزیابی بتن محسوب می شود، ارائه شده است [39].

جدول 12- تقسیم بندی احتمال خوردگی میلگرد براساس آزمایش مقاومت الکتریکی

احتمال خوردگی میلگرد     مقاومت ویژه الکتریکی بتن (اهم-متر)

خیلی زیاد                                         کمتر از 50

زیاد                                                  50 تا 100

کم                                                  100 تا 200 

ناچیز                                               بیش از 200

 

با پیشنهاد طبقه بندی زیر، به نظر می رسد برای شرایط D، E و F از کیفیت عالی، برای شرایط B و C از کیفیت خوب و یا خیلی خوب و برای شرایط A کیفیت متوسط بکار گرفته شود.

جدول 13- تقسیم بندی پیشنهادی کیفیت بتن بر اساس آزمایش مقاومت الکتریکی

کیفیت بتن                                مقاومت ویژه الکتریکی بتن (اهم-متر)

عالی                                                         بیش از 200

خیلی خوب                                                   150 تا 200

خوب                                                            100 تا 150

متوسط                                                          75 تا 100

ضعیف                                                          50 تا 75

خیلی ضعیف                                                 کمتر از 50

لازم به ذکر است اشباع کردن بتن در آب یا آب نمک با غلظت های معین، به شدت بر مقاومت ویژه الکتریکی بتن اثر می گذارد و وجود نمک محلول در منافذ بتن، مقاومت ویژه الکتریکی آن را به مقدار قابل توجهی کاهش می دهد. به هر حال مقادیر مندرج در جداول فوق، برای حالت اشباع در آب قابل شرب صادق می باشد.

اعداد جداول فوق ارتباط تنگاتنگی با مقادیر طبقه بندی های مندرج در جدول 5 (نفوذپذیری در برابر یون کلرید بر اساس جریان عبوری) دارد اما بدست آوردن یک رابطه کلی بین آنها به سهولت مقدور نمی باشد، مگر اینکه در رابطه با یک بتن مشخص، رابطه خاصی بدست آید.

آزمایش های تغییر حجم و ساختار بتن

لازم به ذکر است که آزمایش هایی در مورد جمع شدگی و انبساط بتن وجود دارد که به دوام مربوط می شود. برخی از اشکال دوام دارای آزمایش استاندارد معتبر نمی باشد. در آزمایش استاندارد ASTM C827 [60] تغییرات حجمی اولیه بتن تازه مورد بررسی قرار می گیرد. همچنین در سالهای اخیر در ارتباط با تعیین زمان ترک خوردگی خمیری مقید بتن که در معرض تبخیر خاصی قرار می گیرد دو آزمایش ASTM C1579 [61] و ASTM C1581 [62] پیشنهاد شده است که اولی برای بتن الیافی و دومی برای بتن معمولی کاربرد دارد و عمدتا بتن ها از نظر این زمان ترک خوردگی می توانند با یکدیگر مقایسه شوند اما ضابطه خاصی برای مناسب بودن بتن ها در منابع ارائه نشده است. در مورد بتن سخت شده صرفا آزمایش ASTM C490 [63] به چشم می¬خورد که می تواند جمع شدگی بتن سخت شده را به نمایش گذارد. همچنین برخی آزمایش ها مانند پتروگرافی بتن ASTM C856 [64] به بررسی مشکلات موجود در بتن و دوام آن می پردازد که جنبه کمی خاصی ندارد. همچنین امروزه آزمایش هایی با استفاده از میکروسکوپ الکترونی در ارتباط با بررسی کیفی انجام می شود که عمدتا بر اساس روش روبشی (SEM) استوار است. به تازگی دستورالعمل راهنمای استاندارد برای آزمایش SEM بتن سخت شده در ASTM C1723 [65] ارائه شده است.

آزمایش نیم پیل (پتانسیل خوردگی)

این آزمایش به طور مستقیم کیفیت بتن را از نظر دوام به نمایش نمی گذارد اما در آزمایشگاه می توان با ساخت آزمونه هایی با بتن¬های متفاوت و نگهداری بتن در شرایط مشابه، پتانسیل خوردگی میلگردها را بدست آورد که به نوعی می تواند نمایانگر کیفیت بتن مصرفی هر کدام از آزمونه ها بصورت مقایسه ای باشد.

دستور استاندارد ASTM C876 [66] برای تعیین پتانسیل خوردگی میلگردهای قطعات بتنی سازه ها در کارگاه (در محل) ارائه شده است مشروط بر اینکه میلگرد بتن دارای پوشش خاصی مانند اپوکسی یا روی نباشد. با این حال می توان در آزمایشگاه نیز این آزمایش را با تغییراتی انجام داد. برای این منظور از یک ولت متر و یک الکترود استفاده می شود و قطب مثبت مدار به الکترود و قطب منفی به میلگرد متصل می شود و ولتاژ (اختلاف پتانسیل) بین میلگرد و سطح بتن تعیین می گردد. معمولا محل تماس الکترود با سطح بتن به خوبی با مواد مرطوب کننده، مرطوب می شود تا اتصال برقرار گردد. در این آزمایش طبق دستور استاندارد از الکترود مس- سولفات مس استفاده می شود، اما می توان از الکترود کالومل اشباع یا الکترود نقره-کلرید نقره نیز استفاده کرد و نتایج بدست آمده را طبق استاندارد ASTM G3 [67] تبدیل نمود.

در کارگاه با ایجاد شبکه ای به فواصل 5/0 تا یک متر بر روی سطح بتن، اندازه گیری ها انجام می شود و خطوط تراز هم پتانسیل رسم می گردد. نتیجه آزمایش نمایانگر وجود فعالیت های خوردگی میلگردها در هنگام آزمایش می باشد. در ASTM C876 زمانی که از الکترود مس- سولفات مس استفاده می شود، احتمال وجود فعالیت خوردگی بصورت زیر مطرح شده است [66].

جدول 14- احتمال فعالیت خوردگی میلگردها بر اساس الکترود مس- سولفات مس در آزمایش نیم پیل

احتمال فعالیت خوردگی میلگرد               اختلاف پتانسیل خوردگی (میلی ولت)

کمتر از 10 درصد                                                  بزرگتر از 200-

50 درصد                                                            350- تا 200-

بیش از 90 درصد                                                   کمتر از 350- 

 

باید توجه داشت که با انجام این آزمایش نمی توان مستقیما شدت خوردگی میلگرد و یا میزان خوردگی آن را تعیین نمود.

بر اساس نتیجه آزمایش پتانسیل خوردگی، نمی توان در کارگاه در مورد کیفیت بتن ها از نظر نفوذپذیری در برابر یون کلرید یا CO2 به راحتی اظهارنظر نمود. در آزمایشگاه معمولا میلگردی را درون بتن به نحوی قرار می دهند که ضخامت بتن روی آن دقیقا مشخص و یکسان باشد. در صورتی که میلگردها کاملا مدفون در بتن باشد، باید سیمی را به آن وصل کرد و به بیرون انتقال داد. در صورتی که سر میلگرد بیرون از بتن باشد باید قسمت بیرونی و بخشی از قسمت درونی آن را (به میزان بیش از کاور) با اپوکسی پوشاند. معمولا نمونه های استوانه ای تهیه شده را تا دو سوم ارتفاع درون آب نمک قرار داده و در زمان های مختلف اختلاف پتانسیل قرائت می شود. هنوز دستور استانداردی غلظت آب نمک، نحوه تهیه نمونه، سن قرارگیری در آب نمک و غیره را مشخص نکرده است و پژوهشگران روش مشابهی را برای بتن های مختلف بکار می برند. در صورتی که میلگرد نمونه بتنی کاملا مدفون باشد می توان آن را کاملا درون آب نمک غرقاب کرد [15 و 59].

آزمایش شدت خوردگی میلگردها

شدت خوردگی میلگردها معمولا به صورت mA/cm2 و یا mm/Year بیان می گردد. آزمایش شدت خوردگی میلگردها در واقع آهنگ خوردگی میلگردها را در زمان آزمایش و در شرایط موجود حاکم بر آن نشان می دهد و در اصل بر حسب میکرو آمپر بر هر سانتی متر مربع از سطح میلگرد بیان می شود. هر mA/cm2 1 در واقع معادل 6/11 میکرومتر خوردگی در سطح میلگرد در هر سال می باشد که بر اساس تجربیات موجود این تبدیل انجام می گردد.

امروزه این آزمایش در آزمایشگاه و همچنین در کارگاه انجام می شود که در آزمایشگاه از دستور استاندارد ASTM G5 [68] استفاده می گردد. اما دستورالعمل استانداردی برای کارگاه وجود ندارد. اندازه گیری شدت خوردگی میلگردها به روش پتانسیواستاتیک یا پتانسیودینامیک انجام می شود که روش پتانسیواستاتیک کاربرد بیشتری در مورد خوردگی میلگردهای بتن دارد.

در این آزمایش علاوه بر اندازه گیری اختلاف پتانسیل (نیم پیل)، مقاومت الکتریکی بتن موجود در نزدیکی میلگرد اندازه گیری می شود و بر اساس این اندازه گیری ها، شدت خوردگی میلگردها بدست می آید.

نتیجه این آزمایش اطلاعات خاصی را در مورد کیفیت بتن بدست نمی دهد هرچند نفوذپذیری بتن و کم بودن مقاومت الکتریکی آن می تواند به افزایش شدت خوردگی منجر شود. در پژوهش های آزمایشگاهی، نمونه های شبیه به نمونه های نیم پیل تهیه و در شرایط یکسان در آب نمک نگهداری می گردد و در صورتی که میلگردها یکسان باشد، زیاد بودن شدت خوردگی نشانه بی کیفیتی بتن اطراف آن خواهد بود.

دستگاه مورد استفاده و رایج در تعیین شدت خوردگی میلگردها در کارگاه موسوم به گالواپالس است. شدت خوردگی میلگردها با روش گالواپالس دارای طبقه بندی زیر می باشد [69].

جدول 15- طبقه بندی شدت خوردگی میلگرد بر اساس روش گالواپالس

میزان شدت خوردگی      شدت خوردگی میلگرد (mm/Year)   شدت جریان خوردگی میلگرد در سطح (mA/cm2)

ناچیز                                  کمتر از 6                                                           کمتر از 5/0

کم                                       6 تا 23                                                               5/0 تا 2 

متوسط                                23 تا 58                                                                2 تا 5   

زیاد                                     58 تا 174                                                             5 تا 15     

خیلی زیاد                           بیش از 174                                                           بیش از 15

 

یکی<

این مقاله در تاریخ جمعه، 01 خرداد، 1394 منتشر شده است.
     
نظرات موجود: 0
نوشتن نظر
     
کپی‌رایت © 2017 جدول بتی, واش بتن ,کفپوش بتنی,موزاییک
راه اندازی شده توسط شرکت کیان برنا